Homework 1

(Due date: September 21st @ 5:30 pm) Presentation and clarity are very important!

PROBLEM 1 (25 PTS)

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (12 pts)

\checkmark	$F(X,Y,Z) = \prod(M_0, M_1, M_4, M_6)$
\checkmark	$F = \overline{X(\bar{Y} \oplus \bar{Z}) + \bar{Y}}$

1	$F = (A + \overline{C} + D)(\overline{A}C + \overline{D})$
1	$F = \overline{(\overline{A + B})C + AB\overline{D}}$

b) Determine whether or not the following expression is valid, i.e., whether the left- and right-hand sides represent the same function. Suggestion: complete the truth tables for both sides: (5 pts)

$$\overline{x_1} \, \overline{x_3} + x_2 x_3 + x_1 \, \overline{x_2} = \overline{x_1} x_2 + x_1 x_3 + \overline{x_2} \, \overline{x_3}$$

- c) For the following Truth table with two outputs: (8 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums (POS).
 - Express the Boolean functions using the minterms and maxterms representations.
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums.

У	z	f_1	\mathbf{f}_2
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0
0	0	1	0
0	1	0	0
1	0	0	1
1	1	1	1
	y 0 1 1 0 1 1 1	y z 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1	y z f1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PROBLEM 2 (15 PTS)

• Design a logic circuit (<u>simplify your circuit</u>) that opens a lock (f = 1) whenever the user presses the correct number on each numpad (numpad 1: **8**, numpad2: **3**). The numpad encodes each decimal number using BCD encoding (see figure). We expect that the 4-bit groups generated by each numpad be in the range from 0000 to 1001. Note that the values form 1010 to 1111 are assumed not to occur.

<u>Suggestion</u>: Create two circuits: one that verifies the first number (**8**), and another that verifies the second number (**3**). Then perform the AND operation on the two outputs. This avoids creating a truth table with 8 inputs.

Sketch the resulting logic circuit using ONLY 2-input NAND gates. (5 pts)

PROBLEM 3 (11 PTS)

 Design a circuit (<u>simplify your circuit</u>) that verifies the logical operation of a 3-input AND gate. f = '1' (LED ON) if the AND gate works properly. Assumption: when the AND gate is not working, it generates 1's instead of 0's and vice versa.

PROBLEM 4 (23 PTS)

a) Construct the truth table describing the output of the following circuit and write the simplified Boolean equation (5 pts).

f =

b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (5 pts)

c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (8 pts)

d) Complete the timing diagram of the following circuit: (5 pts)

PROBLEM 5 (26 PTS)

- A 14-letter keypad produces a 4-bit code as shown in the table. We want to design a logic circuit that converts those 4-bit codes to Braille code, where the 6 dots are represented by LEDs. A raised (or embossed) dot is represented by an LED ON (logic value of `1'). A missing dot is represented by a LED off (logic value of `0').
- ✓ Complete the truth table for each output (Q_0 - Q_5).
- ✓ Provide the simplified expression for each output (Q_0 - Q_5). Use Karnaugh maps for Q_5 , Q_4 , Q_1 , Q_0 and the Quine-McCluskey algorithm for Q_3 - Q_2 . Note it is safe to assume that the codes 1110 and 1111 will not be produced by the keypad.

